INTOXICATIONS VS. ANTIDOTES Are we prepared? #BPC2022

Dr. Anne-Marie Descamps CEO Belgian Poison Centre

Welcome

Jonas Moens Belgian Poison Centre

Antidotes and the Belgian Poison Centre

Jonas Moens Poison Centre

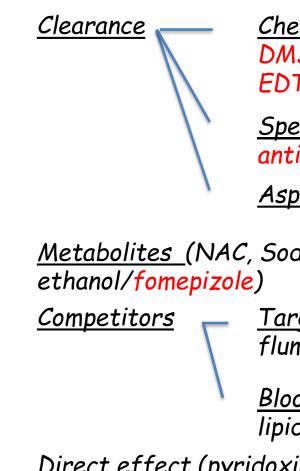
May 2022

- \checkmark What makes something an antidote ?
- ✓ What do you need to expect from antidotes?
- Scientific, pharmacological quality
- Pharmaceutical quality
- ✓ What do you need to expect from the poison centre antidote stock?

 \checkmark What makes something an antidote ?

"A pharmaceutical with <u>assessed</u> mechanism of action, able to modify either the <u>pharmacokinetics</u>, the <u>pharmacodynamics</u> or both of the poison and whose administration <u>reliably</u> results in <u>significant</u> benefit "

Quoted from Prof. Bruno MEGARBANE



Pharmacokinetics

(Evolution>>>severity)

Pharmacodynamics

(Severity>>>evolution)

Chelators (BAL, Penicilammine, DMSA, DMPS, Prussian Blue, Ca-EDTA -Na)

<u>Specific (Digoxin immune Fab, viper</u> antidote, hydroxocobalamin?) Aspecific (Silibinin?)

<u>Metabolites</u> (NAC, Sodium thiosulfate,

<u>Target site (</u>naloxone, flumazenil,oxygen)

> Blood (hydroxocobalamine?, lipid emulsion)

<u>Direct effect (pyridoxin, vitamin K, folinic acid,</u> methylene blue, oximes, physostigmin, biperiden)

✓ How do we expect antidotes to perform? Efficacy and urgency

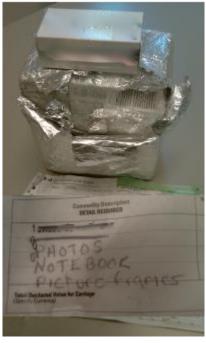
Classification of antidotes according to their documented efficacy and their urgency of availability Classification aspect Efficacy in Antidote efficacy is well-documented Ι. practice The antidote is widely used but not yet universally accepted as effective due to <u>lack</u> ||. of research data; further research is needed to confirm effectiveness and/or the indications for use III. The antidote is of questionable usefulness. More data regarding its effectiveness is needed Urgency of A. The antidote must be available immediately (within 30min) availability B. The antidote must be available within 2 hr C. The antidote must be available within 6 hr

Sohn CH, Ryoo SM, Lim KS, Kim W, Lim H, Oh BJ. Kind and Estimated Stocking Amount of Antidotes for Initial Treatment for Acute Poisoning at Emergency Medical Centers in Korea. J Korean Med Sci. 2014 Nov;29(11):1562-1571

✓ Available as an antidote as such in each hospital?

• Naloxone, IV NAC, hydroxocobalamine,...

 \checkmark Available as frequently used therapeutic medication


• Insulin, penicillamine, calcium, vit k1,...

✓ Available as frequently used medical agent

• Methylene blue, ethanol, glucose,...

✓ How do we expect antidotes to perform? Pharmaceutical Quality

✓ What can you expect from the poison centre antidote stock?

- Good evidence of efficacy
- Transport timeframe of two hours possible
- Good pharmaceutical quality
- Availability not guaranteed in each hospital
- Belgian endemic acute accidental intoxication

"Enough to start the treatment of one or two acutely poisoned patients before the hospital can provide itself, if necessary, with help of the poison centre or other hospitals"

- ✓ Biperiden
- ✓ Physostigmine
- ✓ (Digoxin-specific antibody fragments)
- ✓ 4-Methylpyrazole
- ✓ Obidoxime
- ✓ Silibinin
- ✓ Viper antidote
- ✓ Chelators:
 - 。 Prussian blue
 - 。 Calcium Sodium Edetate
 - DMPS
 - Penicillamine
 - DMSA
 - BAL

Intoxications vs. Antidotes. Are we prepared?

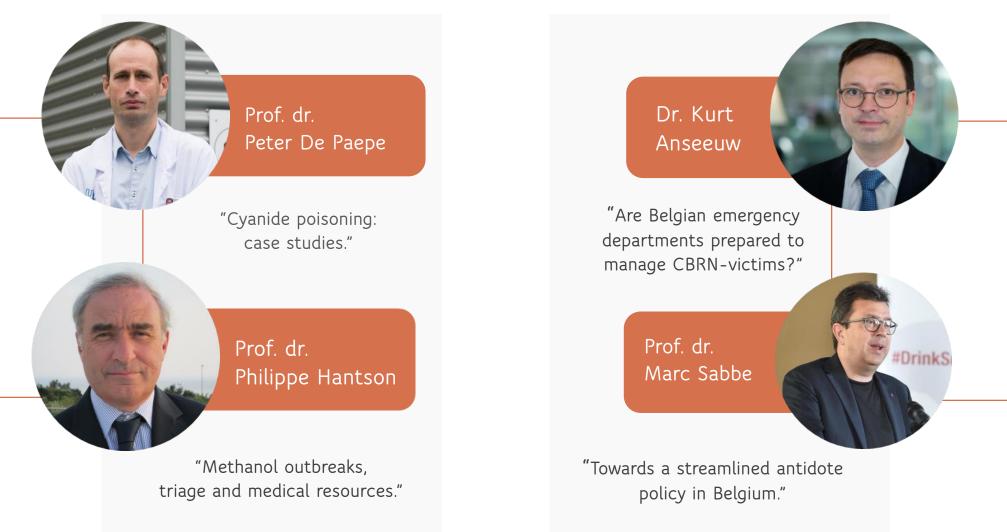
> Most important BPC antidotes

- Digoxin immune Fab (DigiFab[®])
 Cardioglycosides
- 4-Methylpyrazole (Fomepizole Serb®) Toxic alcohols (methanol, ethylene glycol)
- Obidoxime (Toxogonin ®)

Organophosphorous agents (carbamates?)

✓ What can you expect from the poison centre antidote stock?

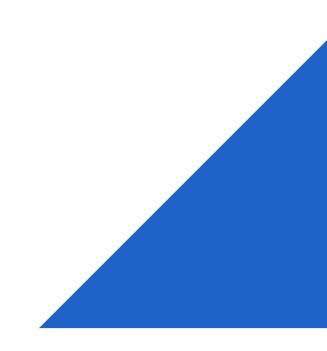
- <u>https://www.antigifcentrum.be/medische-professionals/antidota-belgi</u>
- <u>https://www.centreantipoisons.be/professionnels-de-la-sant/antidotes</u>
- Call 070 245 245, pending the completion of a written statement. This may be sent by fax (+32 02 264 96 46) or email <u>medical.team@poisoncentre.be</u>
- > Transport is provided by the Poison Centre


jonas.moens@poisoncentre.be

Intoxications vs. Antidotes. Are we prepared?

Prof. dr. Peter De Paepe UZ Gent

Cyanide poisonings: case studies



Prof. dr. Peter De Paepe Chief of Department

Cyanide poisoning: Case studies

Belgian Poison Centre 12 May 2022

Cyanide poisoning: Chemical forms of cyanide

► HCN

CN salts (e.g. NaCN, KCN, CNCI)

Nitriles

- Nitroprusside
- Cyanogenic plants

Cyanide poisoning: Sources of exposure

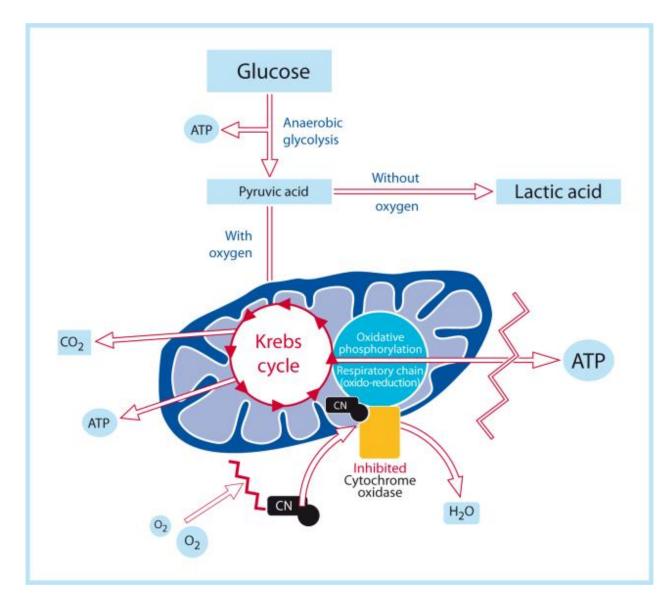
Fire-related (mainly domestic fires)

e.g. wool, silk, polyurethane, polyacrylonitriles, synthetic rubber

Industrial

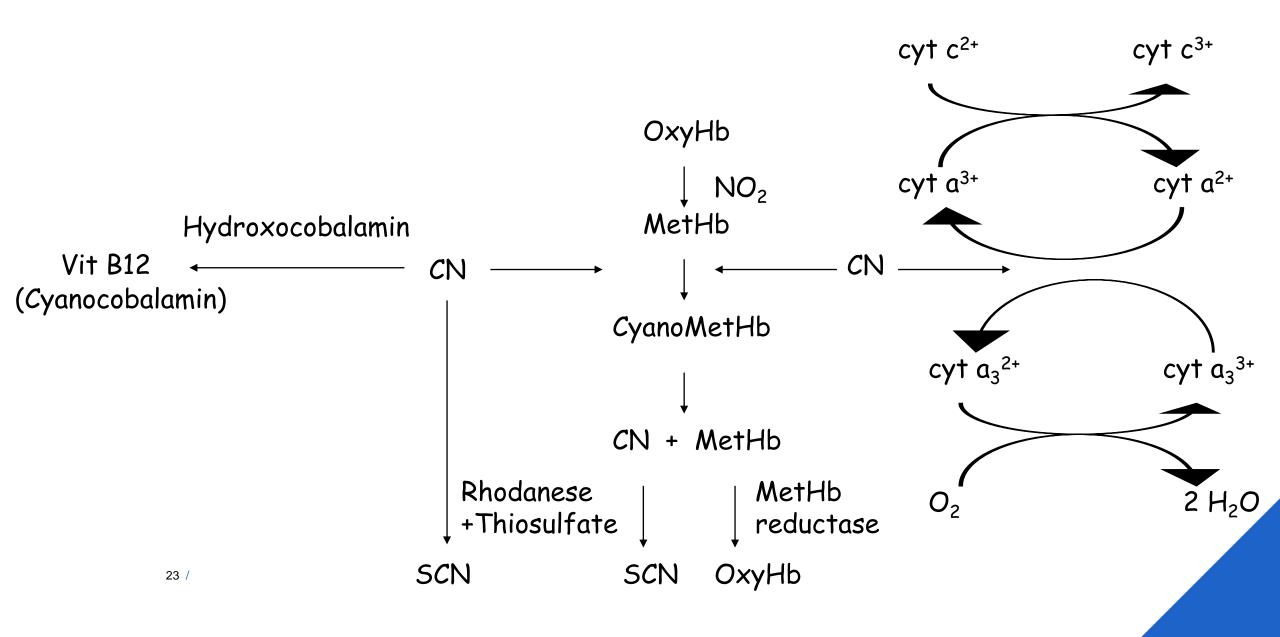
e.g. metal extraction in mining, electroplating in jewelry production, photography, plastics and rubber manufacturing, pesticides

Medical


e.g. sodium nitroprusside

Diet

e.g. cassava root, pits and seeds from bitter almond, apricot, peach, pear, apple


Suicide and homocidal/terrorist acts

Cyanide poisoning: Pathophysiology

Cyanide poisoning: Detoxification

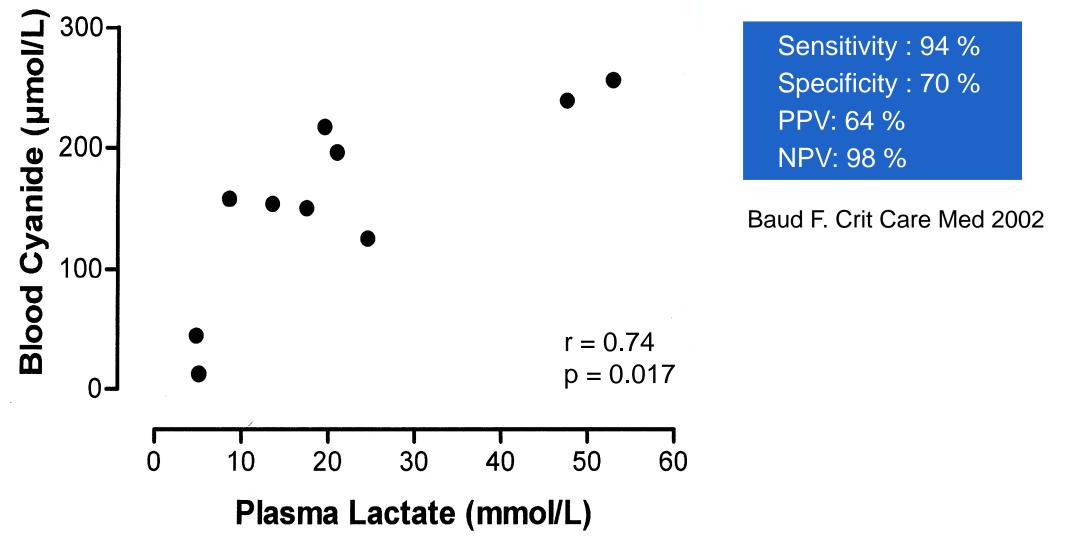
Cyanide poisoning: Onset of symptoms

Minutes CN salts (>> ingestion)

Hours Cyanogenic compounds

Nitriles (ingestion, inhalation, dermal)

Nitroprusside (i.v.)

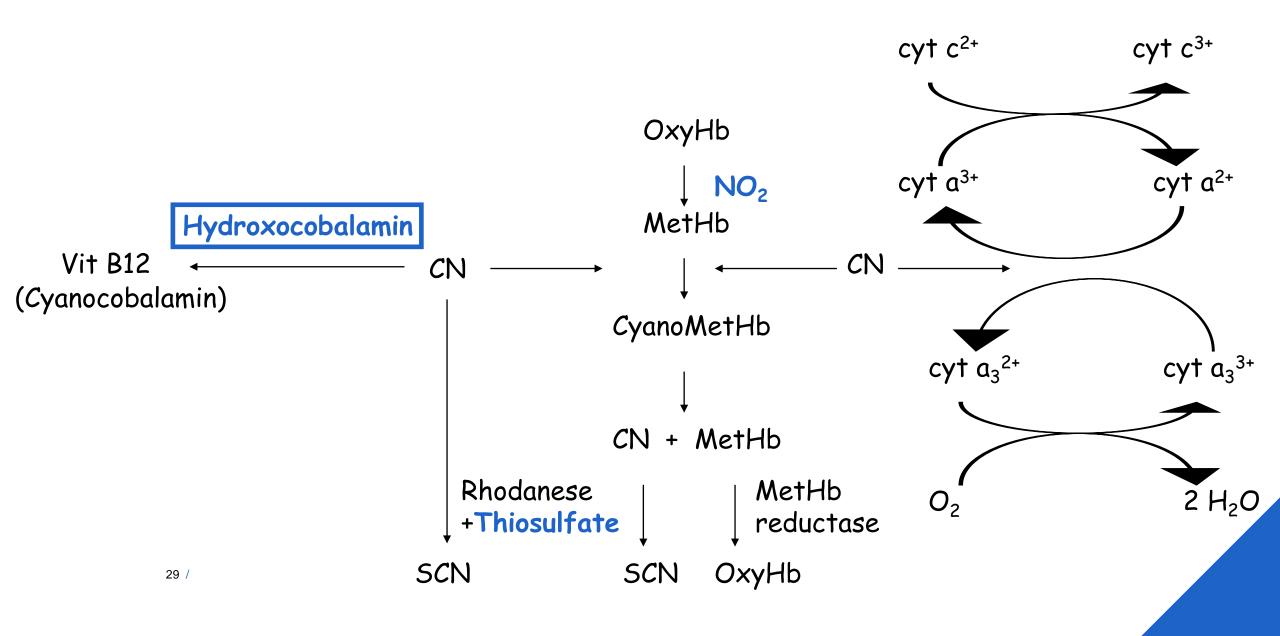

Cyanide poisoning: Clinical presentation

Neurological	Respiratory	Cardiovascular	Metabolic
Dizziness	Hyperpnea	Hypertension	↑ Blood glucose
Restlessness	Central apnea	Tachycardia	↑ Lactate
Anxiety	Pulmonary edema	Shock	Metabolic acidosis
Confusion		Bradycardia	Rhabdomyolysis
Coma		Cardiac arrest	Renal failure
Seizures			

Cyanide poisoning: Diagnostic testing

- Making the diagnosis requires a high index of suspicion based on history and clinical presentation
- Aspecific findings
 - Anion gap metabolic acidosis
 - ↑ Lactate
 - ↑ SvO2
 - ECG: rhythm disturbances, ST segment abnormalities
- Blood CN concentration
 - Not routinely available

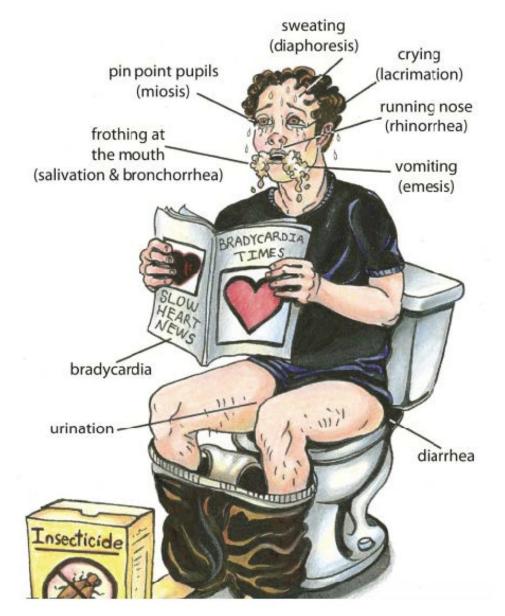
Cyanide poisoning: Diagnostic testing



Cyanide poisoning: Treatment

- Decontamination
- Supportive treatment
- Activated charcoal
- Antidotes
 - Methemoglobin forming agents
 - Cobalt compounds
 - Dicobalt EDTA
 - Hydroxocobalamin (first-line agent)
 - Sulfur donors
 - Thiosulfate

Cyanide poisoning: Antidote treatment



Cyanide poisoning: Hydroxocobalamin

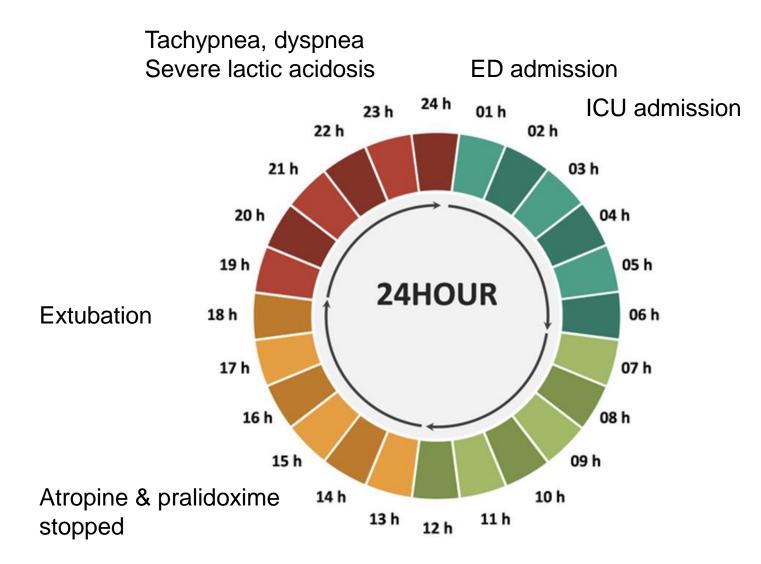
- Currently used in Europe and in the USA
- ▶ 50 g of hydroxycobalamin to bind 1 g of CN
- Dose: 5 g (70 mg/kg in children, < 5g) IV (15 min), repeated depending on severity & clinical response (10g; 140 mg/kg)
- Ability to pass through the blood-brain barrier
- Adverse effects: reddish discoloration of the skin and urine, allergic reactions

- > 30 yrs old male lab technician found comatose in his lab
- On arrival of MICU team
 - A obstructive airway (massive bronchorrhea, salivation)
 - B SaO2 89%, respiratory rate 9/minute
 - C pulse rate 76/minute, blood pressure 124/76 mmHg
 - D GCS 3/15, miosis
 - E floor covered with many broken bottles, one intact bottle containing Aldicarb[®], POCT glucose 1,27 g/L, urine loss, faecal incontinence

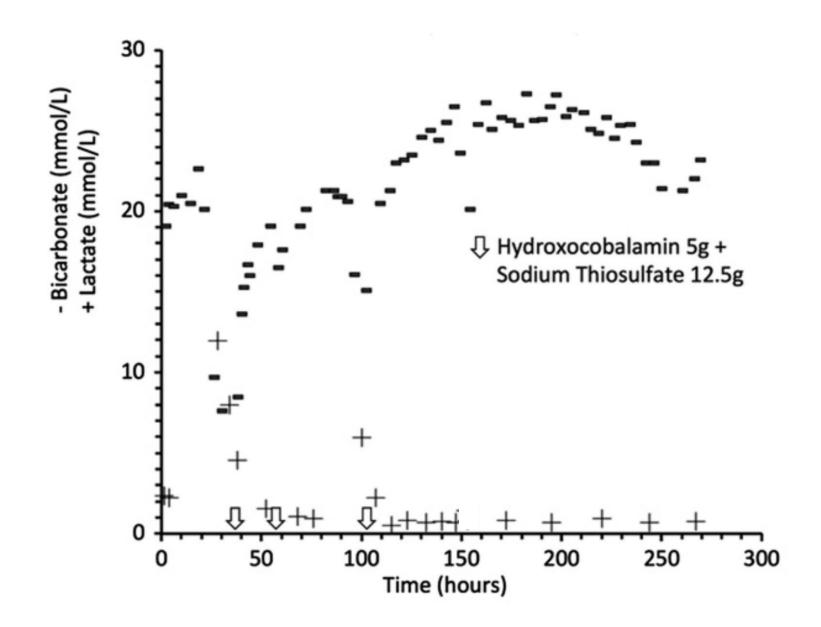
Cholinergic toxidrome

- Heteroanamnesis: autointoxication with Aldicarb[®] 30 minutes before arrival of MICU team
- Treatment by MICU team
 - Safety first
 - Endotracheal intubation
 - High doses of atropine
 - Transfer to hospital

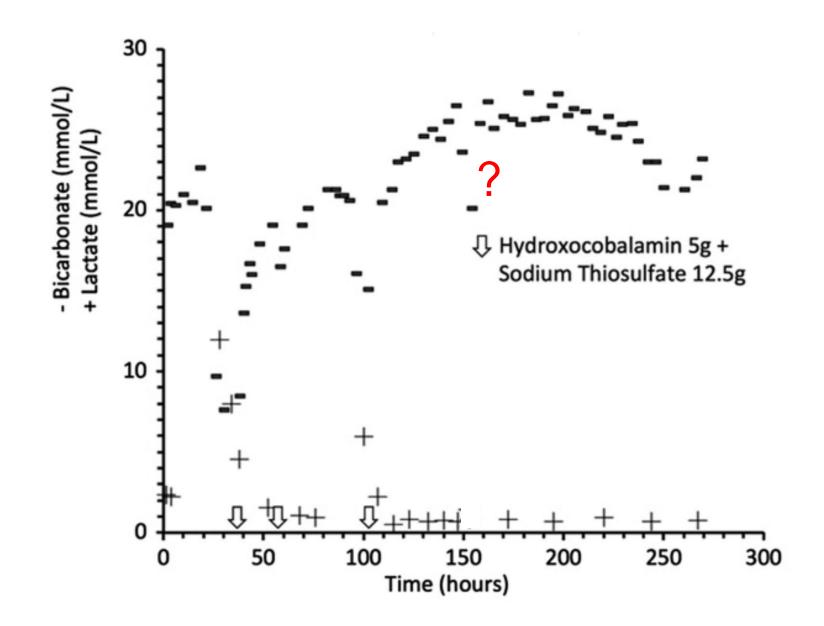
- Treatment in the ED
 - Decontamination
 - Atropine + pralidoxime
- Stable vital signs
- Normal ECG and chest X-ray
- Normal arterial blood gas values

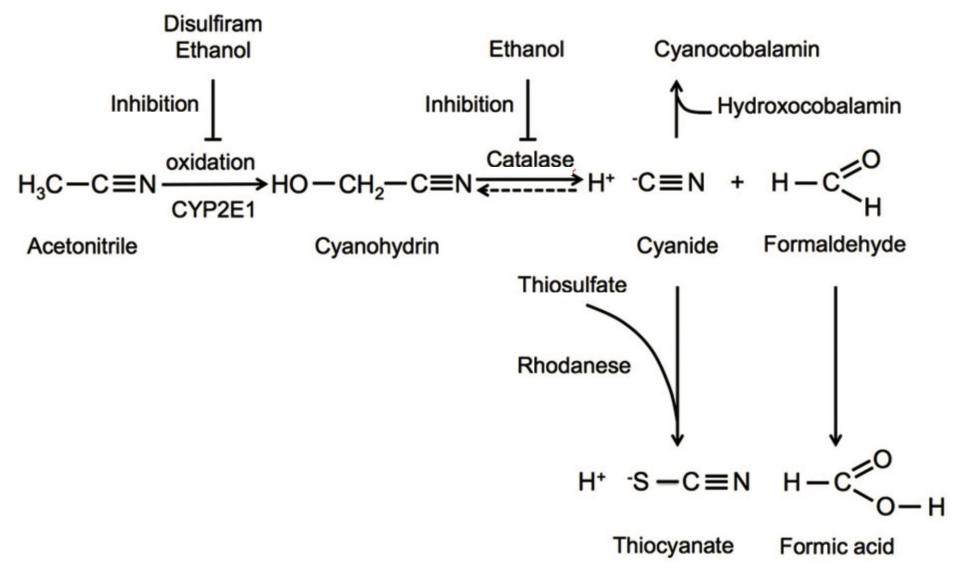


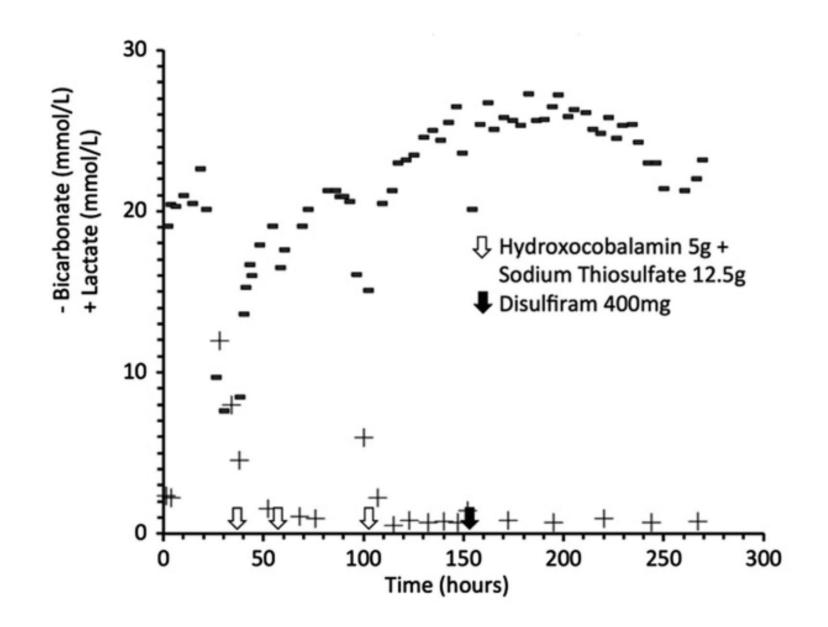
Abnormal blood results


Blood test	Result	Normal value
Osmolality (mOsm/kg)	376	275-295
Acetylcholinesterase RBC (U/L)	3920	11188-16698
Acetylcholinesterase RBC (U/L)	616	1700-5778
Osmolal gap (mOsm/kg)	30	< 10

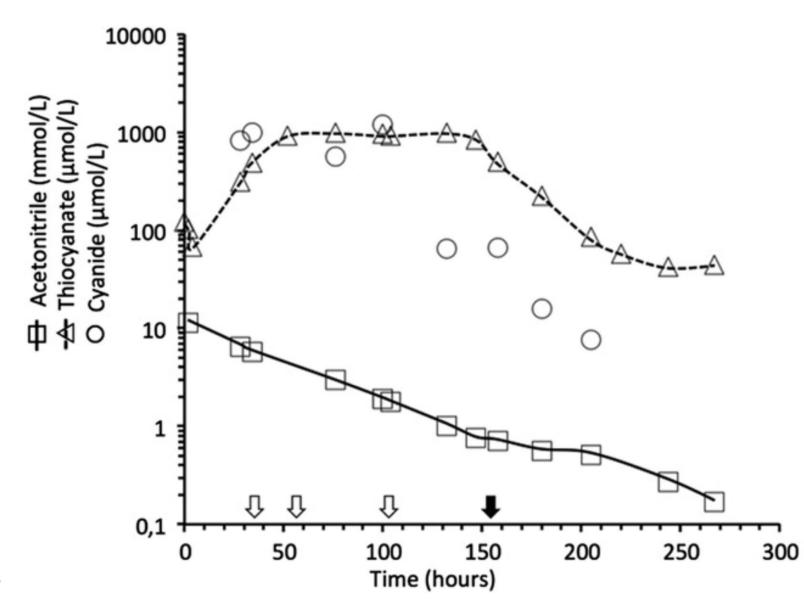
Positive toxicology results


Blood test	Result
Ethanol (g/L)	2.3
Acetone	+


- After exclusion of other causes of lactic acidosis, cyanide poisoning with a cyanogenic compound was considered
- Cyanide antidotes were given with good clinical response
- Acetone was mistaken for acetonitrile as both substances have identical retention times on GC-MS



38 /



39 /

41 /

42 /

- ICU course was further complicated by a pneumonia
- Patient finally made an uneventful recovery
- Transfer to the psychiatry ward on day 11
- Patient was familiar with the toxic effects of both carbamates and acetonitrile
- Patient admitted having also ingested acetonitrile in case the suicide attempt with the carbamate would fail

BRIEF COMMUNICATION

Disulfiram inhibition of cyanide formation after acetonitrile poisoning

Peter De Paepe^{a,b}, Pieter Colin^c, Pieter Depuydt^d, An-Sofie Decavele^e, Julie De Smet^c, Koen Boussery^c, Christophe Stove^f, Dominique Benoit^d, Alain Verstraete^e, Jan Van Bocxlaer^c, and Walter Buylaert^a

^aDepartment of Emergency Medicine, Ghent University Hospital, Ghent, Belgium; ^bHeymans Institute of Pharmacology, Ghent University, Ghent, Belgium; ^cLaboratory of Medical Biochemistry and Clinical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium; ^dDepartment of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium; ^eDepartment of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium; ^fLaboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium

ABSTRACT

Context Cyanide poisoning may be caused by acetonitrile, a common industrial organic solvent and laboratory agent. **Objective** To describe the potential use of disulfiram in treating acetonitrile poisoning in a human clinical case and to further study its effect in human liver microsomes in vitro. Case details A 30-year-old man initially presented with a cholinergic toxic syndrome following ingestion of aldicarb. Toxicological analysis revealed coingestion of ethanol. He subsequently developed severe metabolic acidosis caused by the cyanogenic compound acetonitrile which was erroneously interpreted as acetone in the chromatogram. After three treatments with hydroxocobalamin (5 g i.v.) and sodium thiosulfate (12.5 g i.v.) on days 2, 3, and 5, he had transient improvement but recurrent lactic acidosis. Treatment with disulfiram was associated on day 7 with resolution of metabolic acidosis and slowing of the decrease in acetonitrile concentration. He recovered from acetonitrile toxicity completely. The time course of acetonitrile, thiocyanate, and cyanide concentrations suggested that disulfiram inhibited cyanide formation. **Results** In vitro experiments with human liver microsomes showed the cyanide concentration was significantly lower after incubation with acetonitrile and disulfiram than acetonitrile alone (a mean 60% reduction in cyanide level). Discussion Although disulfiram was given late in the course of the poisoning it is possible that it contributed to the recovery.

ARTICLE HISTORY

Received 13 July 2015 Accepted 25 September 2015 Revised 12 September 2015 Published online 30 November 2015

KEYWORDS

Acetonitrile; antidote; disulfiram; hydroxocobalamin; poison; sodium thiosulfate; toxicology

The Wetteren acrylonitrile disaster May 4th 2013

>2,000 residents evacuated
> 438 ED admissions
> 8 severely poisoned
> 1 person died

Although acrylonitrile is heavier than air it can ascend in the sewer system of houses that have either no or a failing isolation from the main sewer system.

-

RWZI

F

2 - The second second

Conclusion

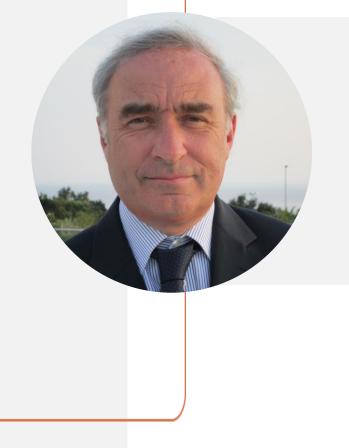
- Always maintain a high degree of suspicion when dealing with (auto-) intoxications
- When the clinical course is atypical, the involvement of substances other than the primary toxin should be considered
- Decontamination, removal from the site of exposure, and oxygen are essential with personal protection for responders
- Patient management is based on history, clinical presentation, simple lab tests
- Toxicology test results usually are not timely for diagnostic purposes
- Hydroxocobalamin is the preferred antidote in cyanide poisoning
- Considering the mechanism of toxicity during treatment of suspected poisoning is important

PROF. DR. PETER DE PAEPE Chief of Emergency Department

Universitair Ziekenhuis Gent C. Heymanslaan 10 | B 9000 Gent T +32 (0)9 332 21 11 E info@uzgent.be

www.uzgent.be Volg ons op

fy


UNIVERSITEIT

UZ UZ MUNIVERSITEIT

Prof. dr. Philippe Hantson UCL

Methanol poisoning: outbreaks, triage and medical resources

Methanol poisoning: outbreaks, triage and medical resources

P Hantson, MD, PhD

Department of Intensive Care and Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Brussels, Belgium

Declarations of interest

• Lecturer or scientific advisor in some meetings or symposia supported by OPI or SERB

Background

- Epidemic outbreaks are not uncommon, especially in poor income countries, and are probably under-reported
- Case fatality rates usually exceed 30%, with significant morbidity in survivors
- Reasons for poor prognosis are multiple:
 - The most important: delay in seeking or obtaining effective medical care
 - In some countries, ethanol consumption is prohibited (illicit manufacture)
 - Signs and symptoms of early methanol poisoning are often nonspecific
 - Symptoms are misdiagnosed for ethanol intoxication
 - Knowledge of pathophysiology of methanol poisoning, diagnosis and treatment may be limited
 - Triage is complicated: patients with early presentation, poorly symptomatic, but at high risk of severe toxicity and requiring optimal therapy >< patients with late presentation, severe toxicity, and poor outcome regardless of the treatment

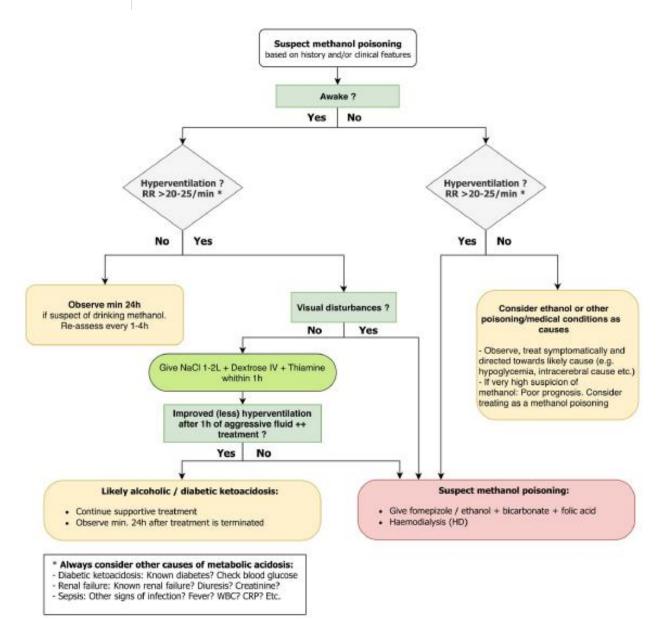
Origin of methanol outbreaks

Methanol poisoning and COVID-19: an unexpected

COVID-19 and contamination: impact on exposures to alcohol-based hand sanitizers reported to Texas **Poison** Control Centers, 2020. Phillips T, Schulte JM, Smith EA, Roth B, Kleinschmidt KC.

Clin Toxicol (Phila). 2021 Oct;59(10):926-931. doi: 10.1080/15563650.2021.1887491. Epub 2021 Feb 19.

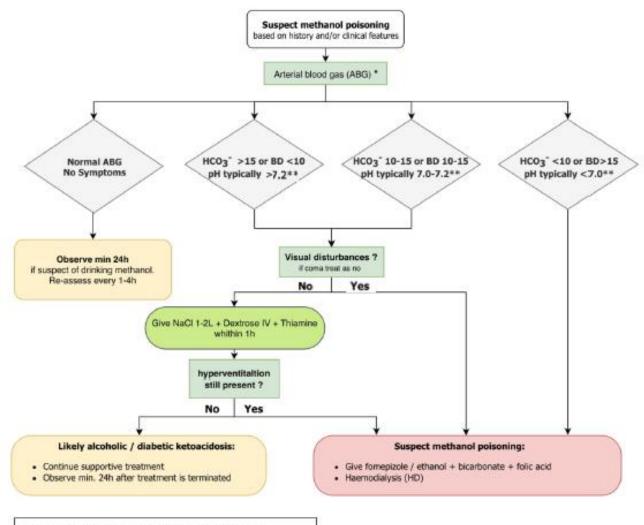
PMID: 33605823


METHANOL POISONING

2019

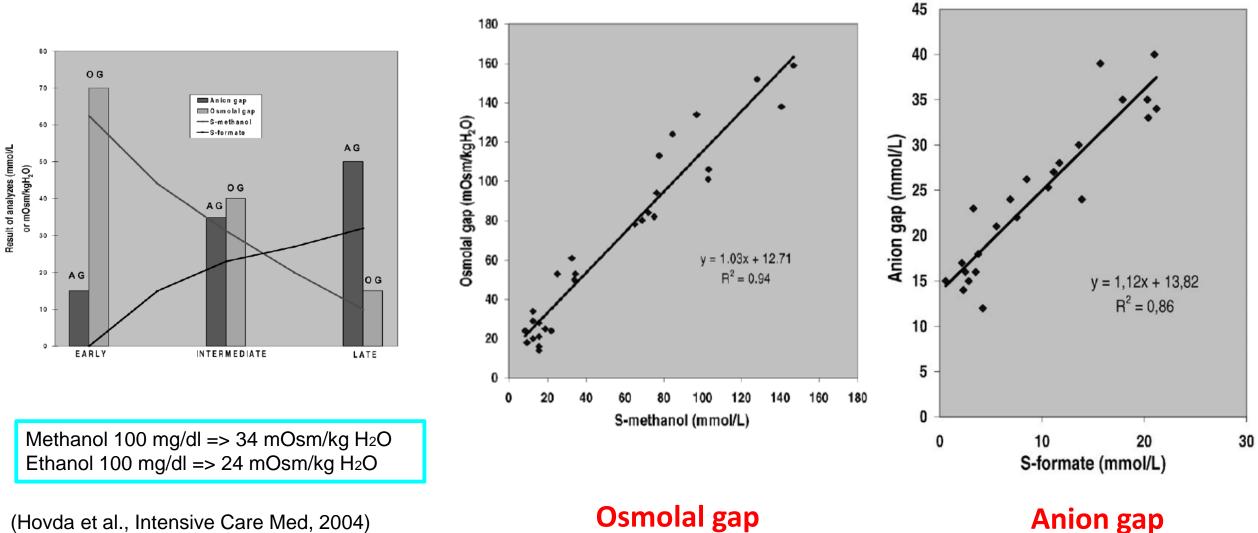
PROTOCOL INTERSECTION DOCUMENT

MSF EMACC-WG


Diagnosis algorithm

METHANOL POISONING

PROTOCOL 2019 MSF EMACC-WG


Diagnosis algorithm

Always consider other causes of metabolic acidosis:
 Diabetic ketoacidosis: Known diabetes? Check blood glucose
 Renal failure: Known renal failure? Diuresis? Creatinine?
 Sepsis: Other signs of infection? Fever? WBC? CRP? Etc.
 ** pH will always depend on degree of hyperventilation. Therefore focus primarily on base deficit (BD)/HCC3

BC: Dave deficit

Laboratory diagnosis

(Hovda et al., Intensive Care Med, 2004)

Difficulties in differential diagnosis

- Other toxic alcohols ingestion: ethylene glycol (di-, or triethylene glycol, isopropanol, propylene glycol...)
- Other causes of metabolic acidosis: diabetic ketoacidosis, but also alcoholic ketoacidosis

Box 2. Drugs and medical commemonic associated with a					
acidosis		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
Acetaminophen		:		:	
Aminocaproic acid				:	
Amphetamines					
Benzene 🔆					
Carbon monoxide		:		:	
Catecholamines		:		:	
Citric acid		:		:	
Cocaine		:		:	
Cyanide					
Didanosine					
Diethylene glycol 🗮					
Ephedrine		:		:	
Fluoride					
Formaldehyde 芣		:		:	
Hydrogen sulfide		:		:	
Ibuprofen					
Inborn errors of metabolism					
Nalidixic acid					
Metformin		:		:	
Niacin		:		:	
Nitroprusside		:		:	
Nonsteroidal anti-inflammate	ory drug	IS ·		:	
Polyethylene glycol 🗮					
Propofol					
Propylene glycol 🗮	- Gé	énéra	teur (le lar	tate
Pseudoephedrine	- 00	moru	tour v		luio
Streptozotocin					
Sulfur		:		:	
Theophylline		:			
Thiamine deficiency		•			
Toluene 🔆				:	
Triethylene glycol 🗮		•••••		•••••	
Valproate		:		:	
Zidovudine		:		:	

Difficulties in differential diagnosis: mind the gaps!

anion gap metabolic	acidosis				
Methanol	:	:		:	
Uremia	:	:	•		
Diabetic ketoacidosis	, alcohol	ic ketoaci	dosis, star	vation	· · · · · · · · · · · · · · · · · · ·
ketoacidosis					
Paraldehyde, phenfor	min		•		
Iron, isoniazid	:	:		:	:
Lactic acidosis				· · · · · · · · · · · · · · · · · · ·	
Ethylene glycol	:	:	:	:	:
		•	•	•	•

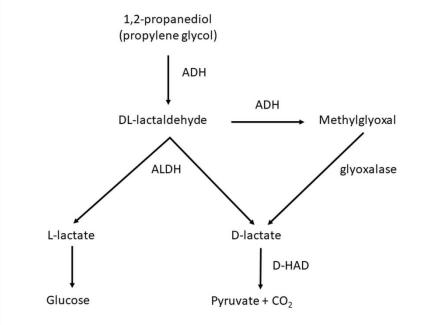
Mannitol		•			
					:
Alcohols: ethanol, e	tnylene g	iycoi, isop	ropanol, r	netnanol,	:
propylene glycol	:	:	:	:	:
Diatrizoate		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•••••
Glycerol	:	:	:	:	
Acetone		•		-	
Sorbitol	•	•	•	•	
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
From Chabali R. Dia				· .	dia ta

 Difficulties occur when anion or osmol gaps are at the limit of « normal range »

Bedside diagnostic test for formate: promising

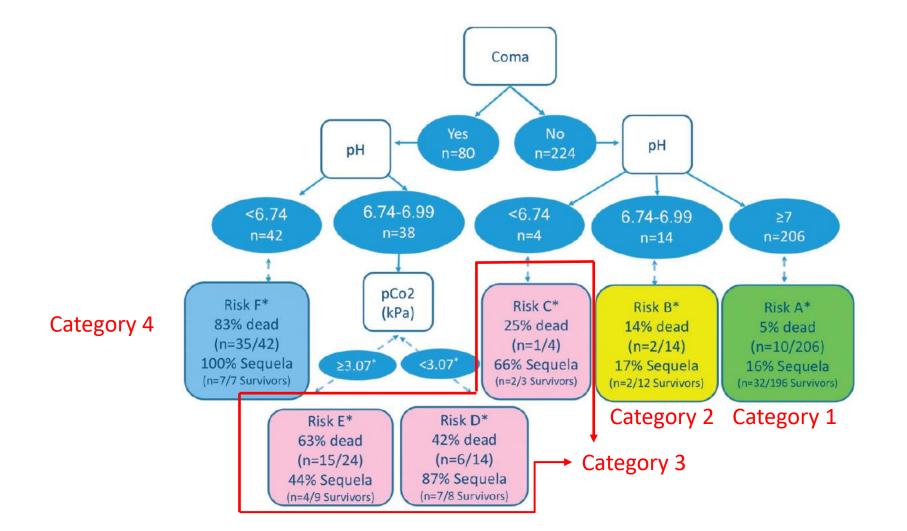
- Enzymatic methods for methanol determination in serum and urine are complex and interferences possible with ethanol
- With late presentation, methanol may have disappeared from blood
- Formate analysis represents a potential diagnostic tool!
- High specificity and sensibility, allows to exclude the responsability of methanol in metabolic acidosis of unknown origin
- Formate test strip with a dry-reagent and colorimetric test device
- Semi-quantitative method, 2 min analysis time
- Promising tool for methanol outbreaks

Difficulties in differential diagnosis: some recent exemple


- 46-yr-old chronic abuser woman admitted to the ED with altered consciousness, no clear history from relatives
- GCS 14/15, ABP 75/50 mmHg, RR 32/min
- Lab results: glucose 40 mg/dL, pH 6,95, pCO2 16 mmHg, HCO3 6 mmol/L, lactate 27 mmol/L, serum osmolality 306 mOsm/kg
 ketone bodies (-)
- What is the next step?
- Anion gap: 37 mmol/L, Osmol gap: 12 mOsm/kg
- Is toxic alcohol ingestion possible?
- Toxicological screening: ethanol, ethylene glycol, methanol, isopropanol: negative!
- What do you suggest?
 - Supportive therapy
 - Antidotal therapy: ethanol or fomepizole?
 - Hemodialysis?

Difficulties in differential diagnosis: some recent exemple

	Day 1	Day 1	Day 1	Day 1	Day 2	Day 2	Day 2	Day 2
	4:00	7:00	8:00	10:00	0:30	4:00	8:00	12:00
	pm	pm	pm	pm	am	am	am	am
Arterial pH	6.95	7.16	7.21	7.36	7.45	7.39	7.37	7.41
(7.35-7.45)								
Serum bicarbonate	6	6	7	14	20	14	14	20
(mmol/L) <i>(22-28)</i>								
Anion gap	37	39	32	20	-	9	19	15
(mEq/L) <i>(8-12)</i>								
Serum osmolality	306	310	-	-	-	310	-	-
(mOsm/kg) <i>(280-300)</i>								
Osmolal gap	12	19	-	-	-	36 (2**)	-	-
(mOsm/kg)								
Urine ketone	Absent	-	-	-	-	-	-	-
bodies								
Serum ethanol	0	0	-	80	50	130	-	-
(mg/dL)								
Serum L-lactate	27	25	19	11.7	6.8	10.8	10.0	5.8
(mmol/L)* <i>(0.5-2.0)</i>								
Serum creatinine	2.80	-	-	0.89	-	0.79	-	-
(mg/dL) <i>(0.6-1.30)</i>								
determined on Radiome								
*adjusted for a serum et	thanol level of	of 130 mg/	/dL					


Difficulties in differential diagnosis: some recent exemple

- What we did: Treatment first! –bicarbonate, hemodialysis, and ethanol *ut aliquid*...
 - The clinical condition improved together with correction of metabolic acidosis!
- Further investigations
 - L-lactate: real or false? (false increase possible with glycolate interference)
 - D-lactate? Yes, also present in blood and urine!
 - Ketone bodies (-): but high β -hydroxobutyrate in urine!
 - Urine: propylene glycol 108 mg/L
- Final diagnosis
 - Mixed alcoholic ketoacidosis and PG toxicity
 - Treatment:
 - Supportive, glucose + insulin for KA
 - Ethanol or fomepizole + HD for PG

Prognostic factors: a clue for triage?

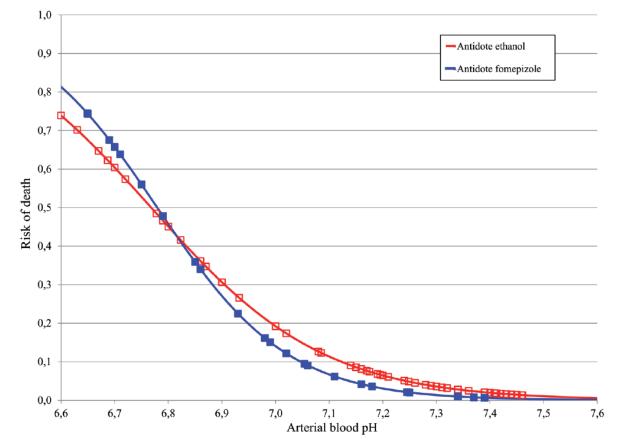
• From the data obtained from two recent outbreaks (Estonia, Czech Republic)

Fomepizole versus ethanol

Consensus statements on the approach to patients in a methanol poisoning outbreak

Hossein Hassanian-Moghaddam, Nasim Zamani, Darren M. Roberts, Jeffrey Brent, Kenneth McMartin, Cynthia Aaron, Michael Eddleston, Paul I. Dargan, Kent Olson, Lewis Nelson, Ashish Bhalla, Philippe Hantson, Dag Jacobsen, Bruno Megarbane, Mahdi Balali-Mood, Nicholas A. Buckley, Sergey Zakharov, Raido Paasma, Bhavesh Jarwani, Amirhossein Mirafzal, Tomas Salek & Knut Erik Hovda

- Antidotes should be administered promptly based on the high probability of methanol outbreak (1C)
- Ideally, antidote should be already started in the pre-hospital setting (1B)
- No special concern about the concurrent misuse of ethanol
- Which antidote? When fomepizole and ethanol are both available, patients with more severe poisoning (acidosis, visual disturbances, coma) should receive fomepizole (1D)
 - What about pediatric patients and pregnant women?
 - What about patients at high risk of toxicity but no current acidosis and organ damage (osmolal gap > 20-30 mOsm, methanol > 50 mg/dL)? Fomepizole with the objective to reduce the need for ICU admission? (1D)


Adverse Drug Events Associated With the Antidotes for Methanol and Ethylene Glycol Poisoning: A Comparison of Ethanol and Fomepizole

- Cohort study including patients admitted between 1996 and 2005 for M or EG poisoning, and treated with at least one dose of ethanol or fomepizole
- 172 charts analyzed: at least 1 adverse drug event in 74 of 130 (57%) ethanol-treated and 5 of 42 (12%) fomepizole-treated cases
- Median adverse drug event onset was within 3 h after the start of either antidote
- CNS symptoms accounted for most adverse drug events (48% ethanol-treated, 2% fomepizole treated)
- Severe adverse drug events occurred in 26 of 130 (20%) ethanol-treated (coma, extreme agitation, cardiovascular) and 2 of 42 (5%) fomepizole-treated (coma, cardiovascular).
- Serious (life-threatening) adverse drug events occurred in 11 of 130 (8%) ethanol-treated (respiratory depression, hypotension) and 1 of 42 (2%) fomepizole-treated (hypotension, bradycardia)
- Results suggest lower occurrence of adverse drug events with fomepizole than ethanol

Fomepizole versus ethanol in the treatment of acute methanol poisoning: Comparison of clinical effectiveness in a mass poisoning outbreak

Sergey Zakharov^a, Daniela Pelclova^a, Tomas Navratil^{ab}, Jaromir Belacek^c, Martin Komarc^c, Michael Eddleston^d & Knut Erik Hovda^e

- 25 pts with fomepizole compared with 68 receiving ethanol. More severely acidotic (*p*= 0.001) and late-presenting (12 h; *p*=0.028) patients received fomepizole more often than ethanol, as reflected in the higher number of fomepizole-treated patients being intubated (*p*= 0.009).
- No association was found between the type of antidote and the survival in either the case series (p=0.205) or the quasi-control groups (p=0.705) in which patients were very closely matched to minimize confounding by allocation.

To cite this article: Sergey Zakharov, Daniela Pelclova, Tomas Navratil, Jaromir Belacek, Martin Komarc, Michael Eddleston & Knut Erik Hovda (2015): Fomepizole versus ethanol in the treatment of acute methanol poisoning: Comparison of clinical effectiveness in a mass poisoning outbreak, Clinical Toxicology

Practical use of antidotes

Ethanol

- Ethanol 94°, diluted in D5%
- Loading dose: 0,6-0,8 g/kg iv over 20-30 min
- Maintenance: 66-154 mg/kg.hr⁻¹
- Hemodialysis: x 2 maintenance dose
- High inter and intra-individual variability
- Ethanol blood monitoring: ideally every hour for adaptation

Fomepizole

- Loading dose: 15 mg/kg iv
- Maitenance: 10 mg/kg.hr⁻¹ iv
- Hemodialysis: 1-1,5 mg/kg.hr⁻¹ or 15 mg/kg every 4 hours (could by reduced by 50% for CRRT)
- Doses are probably « in excess »
- Fomepizole not approved in pregnant women and children (despite published experience), but probably safe at the same dosage

Folic/folinic acid

• No firm evidence

Extra-renal epuration

Recommendations for the Role of Extracorporeal Treatments in the Management of Acute Methanol Poisoning: A Systematic Review and Consensus Statement

We recommend ECTR is initiated in the following circumstances:
1) Severe methanol poisoning (grade 1D), including any of:
a) Coma (grade 1D)
b) Seizures (grade 1D)
c) New vision deficits (grade 1D)
d) Metabolic acidosis from methanol poisoning
i) Blood pH \leq 7.15 (grade 1D)
ii) Persistent metabolic acidosis despite adequate supportive measures and antidotes (grade 1D)
e) Serum anion gap > 24 mmol/L (grade 1D); calculated by serum [Na ⁺] – [Cl ⁻] – [Hco ₃ ⁻].
2) Serum methanol concentration
a) > 700 mg/L or 21.8 mmol/L in the context of fomepizole therapy (grade 1D)
b) > 600 mg/L or 18.7 mmol/L in the context of ethanol treatment (grade 1D)
c) $>$ 500 mg/L or 15.6 mmol/L in the absence of an ADH blocker (grade 1D)
d) In the absence of a methanol concentration, the osmolal/osmolar gap may be informative (grade 1D)
3) In context of impaired kidney function (grade 1D)
To optimize the outcomes from ECTR, we recommend:
 Intermittent hemodialysis is the modality of choice in methanol poisoning (grade 1D). Continuous modalities are acceptable alternatives if intermittent hemodialysis is not available (grade 1D).
5) ADH inhibitors are to be continued during ECTR for methanol poisoning (grade 1D) as well as folic acid
6) ECTR can be terminated when the methanol concentration is < 200 mg/L or 6.2 mmol/L and a clinical improvement is observed (grade 1D)
ECTR = extracorporeal treatment, ADH = alcohol dehydrogenase.

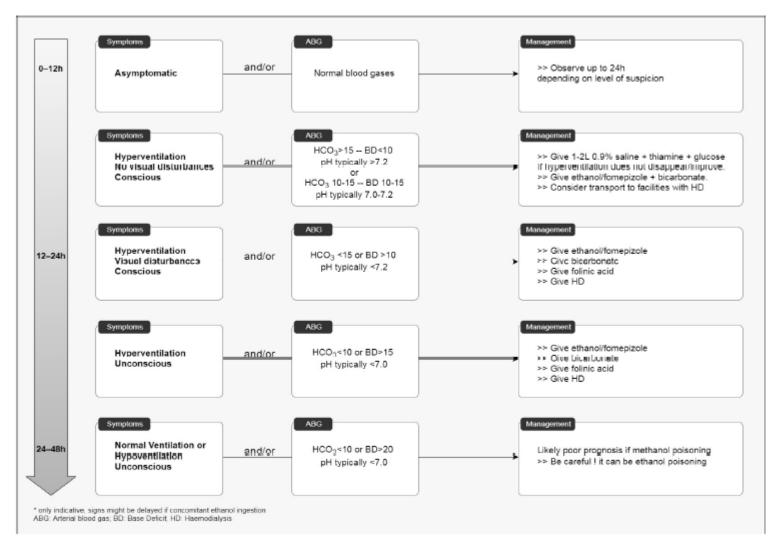
Intermittent versus continuous renal replacement therapy in acute methanol poisoning: comparison of clinical effectiveness in mass poisoning outbreaks

Sergey Zakharov^{1*}[®], Jan Rulisek², Olga Nurieva¹, Katerina Kotikova¹, Tomas Navratil^{1,3}, Martin Komarc⁴, Daniela Pelclova¹ and Knut Erik Hovda⁵

Table 4 Univariate logistic regression analysis of impact of different parameters including hemodialysis modality (IHD vs. CRRT) on mortality and survival with sequelae in the patients with acute methanol poisoning (*n* = 81)

Variable	Outcome									
	Mortality	Mortality				Survival with long-term visual/CNS sequelae				
	OR	(95% CI)	p	R ²	OR	(95% CI)	p	R ²		
HD modality (IHD vs. CRRT)	0.231	0.075-0.719	0.011	0.127	0.261	0.101–0.671	0.005	0.131		
Arterial blood pH	0.002	0.000–0.038	<0.001	0.419	0.000	0.000-0.010	<0.001	0.546		
GCS	0.756	0.663–0.862	<0.001	0.412	0.768	0.679–0.868	<0.001	0.384		
S-creatinine	1.027	1.011-1.043	0.001	0.229	1.041	1.019–1.064	<0.001	0.323		
S-glucose	1.179	1.059–1.312	0.003	0.174	1.164	1.034–1.310	0.012	0.128		
S-EtOH	0.948	0.813-1.106	0.498	0.331	0.999	0.998-1.000	0.042	0.123		

The alpha level used in the univariate analysis is a = 0.05


Italic values indicate statistically significant result at p < 0.05

OR odds ratio, CI confidence interval, HD modality—hemodialysis modality, arterial blood pH—arterial blood pH on admission, GCS Glasgow Coma Scale on admission, S serum, EtOH ethanol

Practical use of extra-renal epuration

- Is there any influence of extra-renal epuration on outcome?
 - Not on mortality, influence on toxicokinetics (methanol + formic acid)
 - Supporting evidence for correction of acidemia and visual disturbances, but effect not totally independent from the administration of antidotes
- Best timing?
 - Insufficient data to determine which patients are unlikely to benefit from extra-renal epuration on the basis of clinical and laboratory features
 - Extra-renal epuration can be implemented nonemergently when there is adequate ADH blockade and in the absence of acute clinical indications for extra-renal epuration
 - Criteria: not only based on the amount ingested by history
- Triage and economic considerations?
 - Obviously, some ethical concerns (moribund patient)
 - In case of major methanol ingestion, extra-renal epuration could reduce the costs of fomepizole therapy or reduced the duration of ethanol therapy (complexity, side effects)
- Duration?
 - 6 to 8 hours HD according to the course of metabolic acidosis, or 18 hours for CRRT

Exemple of protocol

9

Conclusions

- The incidence of methanol outbreaks is still increasing, with some unexpected circumstances (Covid-19)
- Even in Eastern countries, clusters of methanol poisoning could represent a critical issue for any ED and hospital facilities (lab, hemodialysis, ICU beds)
- Triage in the ED is an essential step: clinical and readily available biological criteria (gaps or formic acid for the future), exclusion of alcoholic ketoacidosis
- Correction of metabolic acidosis as supportive care
- Start antidote as early as possible: preparedness for antidote availability (even the cheapest antidote could be missing), HD decision = not urgent
 - Advantage of fomepizole in an epidemic setting: first i.v. loading dose with 12 hr efficacy, no additional blood monitoring, no need for continuous adaptation of the dosage regimen (as with ethanol), no side effects if methanol poisoning not confirmed
- In a crisis situation, use « what you have » (antidote, epuration,...)

Dr. Kurt Anseeuw ZNA

Are Belgian ED's prepared to manage CBRN-victims?

Are Belgian ED's prepared to

manage CBRN-victims ?

Kurt Anseeuw, MD, MSc

Department of Emergency Medicine Ziekenhuis Netwerk Antwerpen (ZNA)

Conflict of interest

None

Conflict of interest - CBRN

Øzna

Chemical – nuclear - radiological threats

Tokyo (1995) - Lessons learned

No plan

- No chemical incident plan
- No hospital disaster plan
- No multidisciplinary coordination and communication

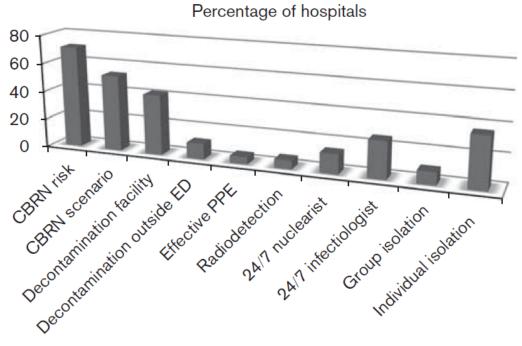
No preparedness

- Majority self-presenters
 - 12 dead + 5500 wounded
 - 700 by EMS
- No awareness
 - After 2 hours "acetonitrile" (FD)
 - After 3 hours "Sarin" (Police) no interagency sharing

Tokyo (1995) - Lessons learned

No safety

- No decontamination
 - On site
 - In hospitals
- No PPE
 - Hospital
 - EMS
- Secondary contamination
 - Medical 20% staff
 - Police & Fire 10% staff
 - $\hfill\square$ Extent of secondary exposure \approx duration and degree of physical contact



Are Belgian ED's prepared ?

Fig. 3

Preparedness of Belgian civil hospit biological, radiation, and nuclear inc Luc J.M. Mortelmans^{a,c}, Sam Van Boxstael^b, H

Marc B. Sabbe^{b,c} and A Belgian Society of Er Disaster Medicine (BeSEDiM) study

138 Belgian ED's

Major data on preparedness expressed in terms of percentage of hospitals possessing the indicated aspect of preparedness.

Serious gaps in the CBRN preparedness (limited and mass casualties)

Are Dutch Hospitals Prepared for Chemical, Biological, or Radionuclear Incidents? A Survey Study

Luc J.M. Mortelmans, MD;^{1,2} Menno I. Gaakeer, MD;³ Greet Dieltiens, MD;¹ Kurt Anseeuw, MD;¹ Marc B. Sabbe, MD, PhD^{2,4}

Prehosp Disaster Med. 2017;32(5):1-9.

40% decontamination facility

Mean capacity/hour

- 3 ambulatory
- 1 supine

□ 56% PPE available 18% level A or B

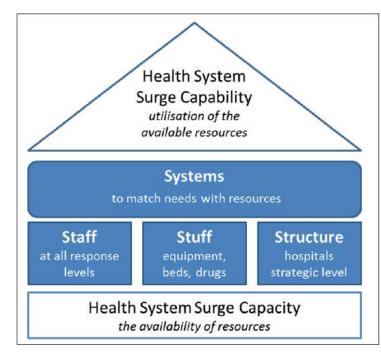
ORIGINAL RESEARCH

Hospital Disaster Preparedness in Switzerland Over a Decade: A National Survey

Simone Dell'Era; Olivier Hugli, MD, MPH; Fabrice Dami, MD, MBA https://doi.org/10.1017/dmp.2018.59

TABLE 2

Features of Disaster Plans in 2016


reduites of Disaster Fians in 2010				
Type of Disaster	N=83 (%)	Activation of the Plan Within the Last 3 Years	N =	80
Mass casualty incident	76 (92)	Hospitals with plan activated in the last 3 years	18 ((23)
Hospital accident (fire, black-out, security or	76 (92)	Plan Tested in Last 3 Years	N = 80	0 (%)
communication problem)				
Infectious problem (eg, Ebola, SARS)	65 (79)	HICS activation only	38 ((48)
NRBC + B + T Risks	N=80 (%)	Simulated patients	33 (41)	
Nuclear/radiological	14 (18)	Descriptive cards	27 ((34)
Biological	25 (31)	Plan tested ≥1 time/year	42 ((52)
Chemical	27 (34)	Plan tested ≥1 time/3 years	80 (100)	
Burned	15 (19)	Presence of a HICS	N = 80 (%)	
Polytraumatized	46 (58)	HICS present	70 (88)	
Plan Designed for Specific Populations of Patients	N=80 (%)	Leader of HICS	N=68 (%)	
Children	19 (24)	Hospital's board member	38 (56)	
Geriatric patients	12 (15)	ED medical officer	14 (21)	
Migrants	10 (13)	Surgery medical officer	4 (6)	
Reception of relatives	33 (41)	Anesthesia medical officer	1 (2)	
Care Team for Victims' Relatives	N=80 (%)	Specialist according to the type of accident	3 (5)	
Staff from emergency department	37 (46)	Other	8 (11)	
Staff from psychiatry department	11 (14)	Time Needed for HICS to be Operational	N=68 (%)	
Staff from other departments	31 (39)	< 20 minutes	7 (10)	
Other	30 (38)	20-40 minutes	38 (56)	
Patients' Flow Management	N=80 (%)	> 40 minutes	23 (34)	
The flow of daily patients is separate from disaster's flow	Yes 41 (51)	Type of Risk Treated	N = 78 (%)	
Flow Management Tool in a Daily Situation	N=83 (%)	Stamical	47 (
		Biological	32 (
Digital support	67 (81)	Nuclear/radiological	25 ((32)
Paper	20 (24)	No decontamination zone	30 (39)	
Other	3 (4)	Readiness of Decontamination Zone	N = 48 (%)	
None	4 (5)	Time necessary to be operational (min)	Average	Median
Flow Management Tool in a Disaster Situation	N=78 (%)		40.3	30.0
Digital support	52 (67)	Decontamination Manager	N = 48	
Paper	56 (72)	Hospital care staff	26 (54)	
Other	6 (8)	Hospital technical staff	23 (48)	
None	5 (6)	Professional firefighters	19 (40)	
Hospital Access Control Manager	N=80 (%)	Civil protection (FEMA in USA)	1 (2)	
Private security	29 (36)	Army	1 (2)	
Police	24 (30)	Other	10 (21)	
Other (technical staff)	34 (43)	Personal Protective Equipment (PPE)	N = 48 (%)	
None	13 (16)	and casks and disposable glaces	44 (92)	
Recall of Additional Staff	N=80 (%)	Light chemical protective seal (PPE)	38 (
ED staff	74 (93)	Other	7 (15)	
Staff from other departments	71 (89)	None	2 ((4)
A data to take at the set of the	C4 (00)			

2019; 23: 1239-1247

Preparedness for chemical crisis situations: experiences from European medical response exercises

R.K. DAVIDSON^{1,6}, S. MAGALINI², K. BRATTEKÅS¹, C. BERTRAND³, R. BRANCALEONI², C. RAFALOWSKI⁴, E. ROSTRUP NAKSTAD⁵

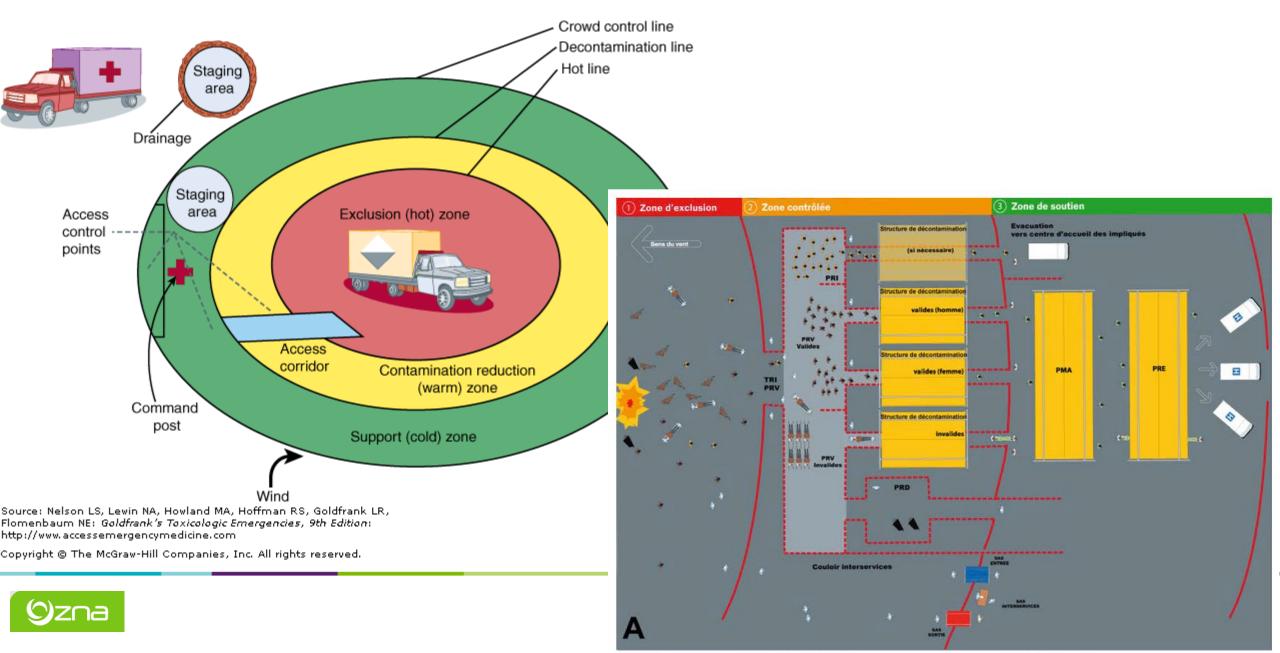
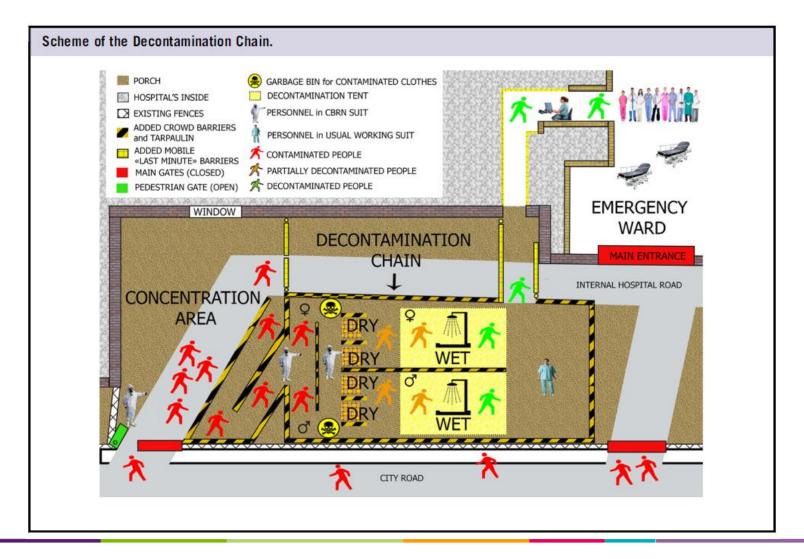


Figure 1. The four Ss of health system surge capacity that can lead to surge capability: staff, stuff, structure and systems.


- Plan
- Preparedness
 - Knowledge
 - Training
- Safety
 - PPE
 - Decontamination
- Stuff
 - Antidotes
 - Detection equipment

Hazmat incident preparedness

Hospital preparedness

Disaster Med Public Health Prep 2018, Epub ahead of print

Personal Protective Equipment

Level A - D

- More expensive
- More troublesome
- More training

PPE

- (Hot zone = level A)
- Warm zone = level B or C

Nuclear incident preparedness

RECOMMENDATIONS TO IMPROVE HEALTH SURVEILLANCE AND LIVING CONDITIONS OF POPULATIONS IN CASE OF A NUCLEAR ACCIDENT

Øzna

Current situation

Plan

- Preparedness
 - Knowledge
 - Training
- Safety
 - PPEDecontamir
 - Decontamination

Antidotes

Plan

- Preparedness
 Knowledge
 Training
- Safety
 - PPE
 - Decontamination

Antidotes

Plan d'urgence hospitalier (PUH)

Deel V Leidraad CBRN

<u>2018</u>

Partie V Guide CBRN

Plan

Preparedness Knowledge Training

Safety PPE Decontamination

Antidotes

Table 2 Teaching methods and duration of each topic in the competency-based training program for hospital staff in respect of medical response to CBRN emergencies

		Duration (h)	Hospital		First responders	
Domain (topic)	Teaching method		Medical staff at ED, OR and ICU	Supportive staff	Administrative staff	EMS staff
Threat identification and risk analysis	e-Learning Traditional:	2 2	\checkmark	-	\checkmark	\checkmark
Health effects of CBRN agents	exercise e-Learning	3	\checkmark	\checkmark	-	\checkmark
Planning and organization	Video lecture e-Learning	3	\checkmark	-	\checkmark	\checkmark
	Video lecture Traditional: exercise	1				
Hospital incident command system	e-Learning	2		-	\checkmark	-
Communication and information management	e-Learning	1	v V	-	V	
Safety, personal protective equipment, and decontamination	Traditional: lecture	2		\checkmark	<u>-</u>	
	Traditional: exercise	4				

MELODY

The main objective of the MELODY project is to define, develop and deploy a harmonised CBRN training curriculum for first responders and medical staff, including ambulance drivers, paramedics and emergency room (ER) personnel. The target group includes members of agencies that are responsible for dealing with emergencies, being unintentional or intentional releases of CBRN, which require immediate action. The training curriculum should provide a clear picture of the possible consequences and effects and how to act together in a safe and effective and efficient way.

Eur J Emerg Med 2017; 24(4):371-376

Menu \Xi

Plan

Preparedness
 Knowledge
 Training

Safety
PPE
Decontamination

Antidotes

2009), Google

Plan

Preparedness
 Knowledge
 Training

Safety
PPE
Decontamination

Antidotes

Plan

Preparedness
 Knowledge
 Training

Safety

- PPE
- Decontamination

Antidotes

Table 1 Antidotes and availability

Antidote	Hospitals possessing the antidote (%)
Atropine	100
Naloxone	89
N-acetylcysteine	84
Flumazenil	83
Glucagon	81
Calcium gluconate	79
Ethanol	62

Specific and exceptional antidota

- Poison Information Center
- > Military Hospital (+ CBNRe MUG/SMUR)
- ZNA Stuivenberg
- Seveso establishments

No management/policy of stocking or distribution

Conclusion

Fundaments in place

Need

- More education and training
- Multidisciplinary communication and coordination (PIC / Clin tox)
- More resources
 - AHLS teams
 - PPE and decontamination capacity
- Antidote policy and management

Funding / resources

Thank you for your attention

Prof. dr. Marc Sabbe UZ Leuven

Towards a streamlined antidote policy in Belgium

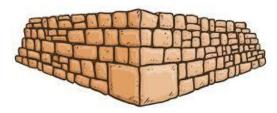
Towards a streamlined antidote policy in Belgium

Prof Dr Marc Sabbe Emergency Medicine UZ Leuven Department of Public Health and Primary Care KULeuven Interuniversity Post-Graduate Disaster Management

UZ Leuven Herestraat 49 B - 3000 Leuver www.uzleuven.be tel. +32 16 33 22 11 UNIVERSITY HOSPITALS LEUVEN

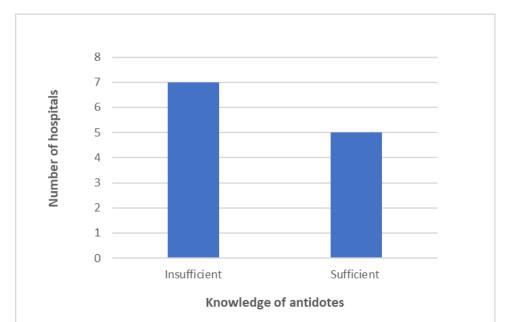
Poisoning

- Individual case
- Several cases
- Incident/disaster
 - Risks?
 - Exposure?
 - Number of victims?



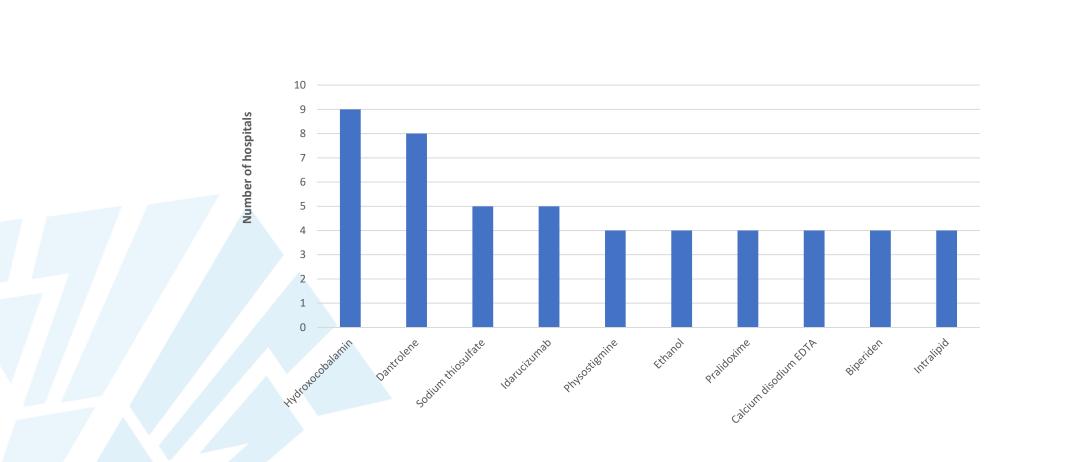
Therapeutic cornerstones

- Supportive therapy
- Limit absorption
- Enhance elimination
- Antidotes (including lipid resuscitation)
- Psychosocial therapy



Antidotes

- Limited use
- Limited knowledge
- Expire cost
- Storage:
 - What?
 - Where?
 - How much?



Antidote	Intoxication	Number of hospitals
Naloxone hydrochloride	Opioids	17 (100%)
Atropine sulphate	Cholinesterase inhibitors	16 (94%)
Calcium gluconate	Fluorides	16 (94%)
Ethanol	Methanol and ethylene glycol	16 (94%)
Methylene blue	Methemoglobinemia and cyanide	16 (94%)
Phytomenadione	Vitamin K antagonists	16 (94%)
Activated charcoal	General use	15 (88%)
Biperiden	Anticholinergics	15 (88%)
Hydroxocobalamin	Cyanide	15 (88%)
Idaricuzumab	Dabigatran	15 (88%)
N-acetylcysteine	Paracetamol	15 (88%)
Dantrolene	Malignant hyperthermia	14 (82%)
Glucagon hydrochloride	Beta blockers, calcium channel blockers	14 (82%)
Octreotide	Sulfonylureas	14 (82%)
Deferoxamine mesylate	Iron and aluminium	13 (76%)

Antidotes

Antidotes

- Tiered system:
 - Prehospital: life saving CBRNe medical team
 - ED
 - Hospital pharmacy
 - Other institution
 - Other hospital
 - Poison control center
 - Seveso industry
 - ZOO
 - ...

Storage: What?

- Some national guidelines (US, UK, Saoudi Arabia, ...)
- No Belgian consensus guidelines
- Risk dependency
- Collaboration
 - Hospital networks
 - Poison control center
 - Industry

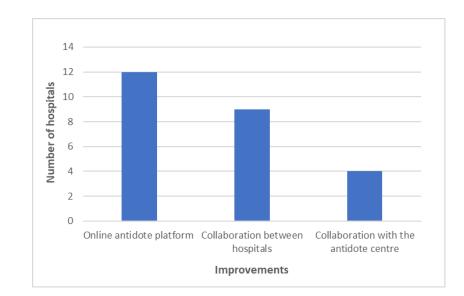
Storage: What?

- Belgian consensus
 - Who starts initiative?
- Collaboration
 - Hospital networks
 - Poison control center
 - Industry

...

Storage: where?

- Tiered system
 - Prehospital
 - No regulation on medical supplies for medical teams
 - Only one CBRNe medical team
 - Hospitals
 - ED or pharmacy?
 - Others
 - Insufficient known



Storage: where?

- Online platform
 - Voluntary?
 - Obligation?
- Hospital collaboration
 - Networks
 - Supra-network
- Increased role PCC

Storage: How much? Larger incident

- Previous initiatives
- Risk analysis
- Centralised decentralised?
- Start with existing number
 - But: N = ?
 - Online platform

Conclusions

- Do we want a new face mask incident?
- Different steps are needed
 - Sensibilisation of the needs
 - Politicians
 - Professionals
 - Consensus meetings/Delphi/guidelines
 - Implementation
 - Online platform
 - Storage
- Coordinating role of PCC

Thank you for your attention.

